Whispering Gallery Mode Resonators

Matt T. Simons

Department of Physics
College of William & Mary

Summer 2008 AMO Research
1. Whispering Gallery Mode Resonators
2. Manufacture
3. Optical Alignment
4. Results
Whispering Galleries

St. Paul’s Cathedral
 - Acoustic Waves
 - Electromagnetic Waves
 - Total Internal Reflection
 - Resonant Modes
 - Spheres or Disks
 - WGMRs

Whispering Gallery
Whispering Galleries

- St. Paul’s Cathedral
 - Acoustic Waves
 - Electromagnetic Waves
 - Total Internal Reflection
 - Resonant Modes
- Spheres or Disks
- WGMRs

Whispering Gallery
Whispering Galleries

- St. Paul’s Cathedral
 - Acoustic Waves
- Electromagnetic Waves
 - Total Internal Reflection
 - Resonant Modes
- Spheres or Disks
 - WGMRs
Whispering Galleries

- St. Paul’s Cathedral
 - Acoustic Waves
- Electromagnetic Waves
 - Total Internal Reflection
 - Resonant Modes
- Spheres or Disks
- WGMRS
Applications

Light Storage
Laser Cavity
Non-linear Processes
- Second Harmonic Generation
- Parametric Oscillation

Figure: Experiment Using WGMRs
Applications

Light Storage
Laser Cavity

Non-linear Processes

- Second Harmonic Generation
- Parametric Oscillation

Figure: Experiment Using WGMRs
Applications

Light Storage
Laser Cavity
Non-linear Processes

- Second Harmonic Generation
- Parametric Oscillation

Figure: Experiment Using WGMRs
Applications

Light Storage
Laser Cavity
Non-linear Processes

- Second Harmonic Generation
- Parametric Oscillation

Figure: Experiment Using WGMRRs
Production

Figure: WGMR Disk

Materials
- Glass
- LiNbO$_3$
- LiTaO$_3$, Silica, CaF$_2$
Production

Figure: WGMR on Post

1. Rough-cut Disks from Material
 - Diamond-Tipped Drill Bits
2. Attach to Post for Lathing
 - Heat-Activated Clamp
3. Sand and Polish
 - Lathe
 - Diamond Grit Sandpaper
How to Couple Light Into WGMR

Light Entering Disk Must Refract 90°

- Impossible for $n_1 < n_2$
- For $n_1 > n_2$:
 θ_1 Required Will Result in Total Internal Reflection
How to Couple Light Into WGMR

Light Entering Disk Must Refract 90°

- Impossible for $n_1 < n_2$
- For $n_1 > n_2$:
 - θ_1 Required Will Result in Total Internal Reflection
How to Couple Light Into WGMR

Light Entering Disk Must Refract 90°

Impossible for $n_1 < n_2$

For $n_1 > n_2$:

θ_1 Required Will Result in Total Internal Reflection
How to Couple Light Into WGMR

Solution:
- $n_1 > n_2$
- Total Internal Reflection
- Disk Must Be Within Range of Evanescent Wave

Figure: Coupling
How to Couple Light Into WGMR

Solution:
- $n_1 > n_2$
- Total Internal Reflection
- Disk Must Be Within Range of Evanescent Wave

Figure: Coupling
How to Couple Light Into WGMR

Solution:
- $n_1 > n_2$
- Total Internal Reflection
- Disk Must Be Within Range of Evanescent Wave

Figure: Coupling
How to Couple Light Into WGMR

Solution:

- \(n_1 > n_2 \)
- Total Internal Reflection
- Disk Must Be Within Range of Evanescent Wave

Figure: Coupling
Apparatus

Figure: Our Current Apparatus
Apparatus

Photodetector Placement

Figure: Desired

Figure: Current
Results

Uncoupled Disk

Coupled Disk

More Coupling!
Results

WGMR Signals

- Frequency Reference
- WGMR Maximal Coupling
- WGMR Small Coupling
- WGMR Uncoupled
Future Work

- LiNbO$_3$
- Diamond Prism
- New Mounting System

Figure: Mount Prototype
Summary

- Have Built WGMRs and Achieved Coupling
- Understand the Techniques Behind Construction
- Non-Linear Media and Future Experiments
 - LiNbO₃
 - New Mount Design
THE END